Testing for additivity and joint effects in multivariate nonparametric regression using Fourier and wavelet methods

نویسندگان

  • Daniela De Canditiis
  • Theofanis Sapatinas
چکیده

We consider the problem of testing for additivity and joint effects in multivariate nonparametric regression when the data are modelled as observations of an unknown response function observed on a d-dimensional (d ≥ 2) lattice and contaminated with additive Gaussian noise. We propose tests for additivity and joint effects, appropriate for both homogeneous and inhomogeneous response functions, using the particular structure of the data expanded in tensor product Fourier or wavelet bases studied recently by Amato and Antoniadis (2001) and Amato, Antoniadis and De Feis (2002). The corresponding tests are constructed by applying the adaptive Neyman truncation and wavelet thresholding procedures of Fan (1996), for testing a high-dimensional Gaussian mean, to the resulting empirical Fourier and wavelet coefficients. As a consequence, asymptotic normality of the proposed test statistics under the null hypothesis and lower bounds of the corresponding powers under a specific alternative are derived. We use several simulated examples to illustrate the performance of the proposed tests, and we make comparisons with other tests available in the literature.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Testing additivity in nonparametric regression under random censorship

In this paper, we are concerned with nonparametric estimation of the multivariate regression function in the presence of right censored data. More precisely, we propose a statistic that is shown to be asymptotically normally distributed under the additive assumption, and that could be used to test for additivity in the censored regression setting.

متن کامل

Estimating the error distribution in nonparametric multiple regression with applications to model testing

In this paper we consider the estimation of the error distribution in a heteroscedastic nonparametric regression model with multivariate covariates. As estimator we consider the empirical distribution function of residuals, which are obtained from multivariate local polynomial fits of the regression and variance functions, respectively. Weak convergence of the empirical residual process to a Ga...

متن کامل

Estimation of Reference Evapotranspiration Using Artificial Neural Network Models and the Hybrid Wavelet Neural Network

Estimation of evapotranspiration is essential for planning, designing and managing irrigation and drainage schemes, as well as water resources management. In this research, artificial neural networks, neural network wavelet model, multivariate regression and Hargreaves' empirical method were used to estimate reference evapotranspiration in order to determine the best model in terms of efficienc...

متن کامل

Bayesian Nonparametric Modeling for Multivariate Ordinal Regression

Univariate or multivariate ordinal responses are often assumed to arise from a latent continuous parametric distribution, with covariate effects which enter linearly. We introduce a Bayesian nonparametric modeling approach for univariate and multivariate ordinal regression, which is based on mixture modeling for the joint distribution of latent responses and covariates. The modeling framework e...

متن کامل

Endpoint in plasma etch process using new modified w-multivariate charts and windowed regression

Endpoint detection is very important undertaking on the side of getting a good understanding and figuring out if a plasma etching process is done in the right way, especially if the etched area is very small (0.1%). It truly is a crucial part of supplying repeatable effects in every single wafer. When the film being etched has been completely cleared, the endpoint is reached. To ensure the desi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Statistics and Computing

دوره 14  شماره 

صفحات  -

تاریخ انتشار 2004